EMBARGOED MEDIA RELEASE

Embargoed until 6.30pm Wednesday 30 November

Protecting our futures is a Tall order, Queensland is up to the task

There are many things that we want to protect in our lives: The Great Barrier Reef, our brains, our electronic information. All of these will be safer in the future because of the work of Queensland’s Tall Poppies.

8 young researchers from across Queensland are being recognised for their work on these and other areas that will affect all our lives both now and well into the future. These Tall Poppies are being recognised and celebrated at the Premier’s Science and Innovation Reception on Wednesday 30 November.

These bright young scientists are working in a diverse range of areas, all working towards a better, healthier tomorrow. There are Physicists looking at better ways to safe guard our computers and unravel our DNA, Marine Biologists studying sea turtles and biodiversity and Health researchers improving our bodies and minds. Queensland science is alive and kicking!

They will spend the next year engaging with teachers, school students, parents and the broader community around NSW and across Australia as part of the Tall Poppy Campaign run by the Australian Institute of Policy and Science.

“The Young Tall Poppy Science Awards aim to recognise early career researchers who have achieved significant scientific milestones and have demonstrated their willingness and ability to engage people in science,” says Australian Institute of Policy and Science Executive Director, Elektra Spathopoulos.

“The Awardees are passionate about the need to share their research with the community and encouraging young people to think seriously about pursuing science into their future education and career pathways,” she explains.

With Science issues and policy being debated more in the public sphere, and still decreasing enrolments in senior high school science, the need to inspire young people about science and engage and inform the wider community has never been more important.

Since The Tall Poppy Campaign began over ten years ago, former Young Tall Poppy Science Award winners have continued to excel, winning more senior science awards, including Eureka Prizes and the Prime Minister’s Prizes for Science.

The Queensland Young Tall Poppy Awards are supported by The University of Queensland, Griffith University, Queensland University of Technology, Queensland Institute of Medical Research and CSIRO with national support through the Department of Health and Ageing.

The 2011 Queensland Young Tall Poppy Science Awards will be presented by Queensland Premier, Anna Bligh and Queensland Chief Scientist Dr Geoff Garrett. The Queensland Young Tall Poppy of the Year will also be announced from among the winners on the night.

For more information, images or to arrange interviews:
- Camille Thomson, Queensland Campaign Manager – 0413 694 641
For further comment on the Tall Poppy Campaign:
- Elektra Spathopoulos, Executive Director AIPS and the Tall Poppy Campaign – 0425 433 954
Dr Natalie Ban
James Cook University – ARC Centre of Excellence for Coral Reef Studies
Marine Conservation
Dr Ban explores how conservation planning can be improved to protect biodiversity while minimizing impacts on humans. Natalie’s research is innovative because it incorporates patch dynamics into conservation planning.

Associate Professor Matthew Davis
The University of Queensland
Physics of Ultra-Cold Quantum Gases
Associate Professor Davis’ research focuses on studying the non-equilibrium behaviour of Bose-Einstein condensates and in particular how they form from an ordinary gas. This work provides quantitative insights into the dynamics of phase transitions, relevant to many aspects of nature from the unraveling of DNA to the birth of the universe, but they are still poorly understood.

Dr Tamara Davis
The University of Queensland
Astrophysics
Dr Davis’ research uses supernovae (exploding stars) to trace the expansion history of the universe, and measure how galaxies grow from the primeval soup that was the hot, dense early universe. She is testing the fundamental laws of physics, like Einstein’s theory of Relativity and Quantum Physics.

Dr Mariana Fuentes
James Cook University – ARC Centre of Excellence for Coral Reef Studies
Conservation planning, Marine Biology
Dr Fuentes’ broad scientific interest lies in the conservation and management of threatened marine mega-fauna in a changing climate, spatial risk assessments for conservation and management planning, and the impacts of environmental change on threatened species. She has specifically been committed to the conservation of sea turtles.

Dr Siobhan Schabrun
The University of Queensland
Brain plasticity and Rehabilitation
Using powerful non-invasive brain stimulation techniques, Dr Schabrun’s research investigates the processes that underpin brain plasticity with a key focus on the development of new therapies that promote brain plasticity with the aim of alleviating symptoms and improving function in common conditions such as stroke, chronic pain and incontinence.

Dr Erik Streed
Griffith University
Quantum Physics
Dr Streed’s work focuses on building optics to get information in to and out of single atoms in a quantum computer. Quantum computing offers revolutionary solutions to the limitations of current computers by taking advantage of quantum physics, making problems, such as code breaking or database searching, become much faster than with a normal computer.

Dr Corneel Vandelanotte
Central Queensland University
Population health / Health Promotion
Dr Vandelanotte's research is focused on finding effective and innovative methods to increase physical activity in large numbers of Australians at a low cost. He has designed and evaluated several innovative website-delivered physical activity interventions.

Dr Kristy Vernon
Queensland University of Technology
Optics, Plasmonics and Nanoparticles
Dr Vernon’s research is in plasmonics, the study of the interaction of light with metallic nanostructures. Nanostructures are finding applications in environmental sensing, information processing and health. Nanoparticles can also focus and direct light which is useful for solar cell design, and for creating new types of optical circuits for computing and information processing.